
ON D I F F U S I O N  IN T H E  C R I T I C A L  D O M A I N  
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An approach permi t t ing  the const ruct ion of approximate solutions of p rob lems  for  the non-  
l inear  nonsta t ionary cr i t ica l  diffusion equation in a space domain of a r b i t r a r y  geomet ry  
is proposed.  

Measurements  in the cr i t ica l  domain have disclosed not only the ex t r eme ly  slow p ro g re s s  of diffusion 
p roc e s se s  in this domain [1-4] but also that they proceed  in two stages in t ime [5] together  with the laminar  
s t ruc tu re  of the diffusion s t r e ams  in binary liquid solutions [6]. The s ingular i t ies  mentioned a re  not in-  
cluded in the c lass ica l  Fick  diffusion equation, and this was a st imulus to der ive  a m o re  exact  cr i t ica l  d i f -  
fusion equation. Thus,  for  example,  an equation based on an analysis  of the cor re la t ion  between the f luctua-  
t ions in component concentrat ions in a binary solution in the cr i t ica l  domain is contained in [7]. The equa-  
tion f rom [7] pe rmi t t ed  an explanation of the laminar  configuration of the diffusion s t r e am s  in d i rec t  p r o -  
ximity to the cr i t ica l  point. La t e r  [8], the domain of applicabili ty of this equation was extended by adding 
a nonlinear t e rm.  A r a the r  different  kind of nonlinear t e rm,  which more  adequately desc r ibes  the expan-  
sion of the diffusion s t r eam in powers of the re la t ive  change in concentrat ion is proposed  in [9]. Conse-  
quently, the c r i t i ca l  diffusion equation taking account of the effect  of spatial  d i spers ion  and the nonl inear i ty  
of t e r m s  in the diffusion s t r e am expansion permi t ted  the descr ip t ion  of not only the laminar  configuration 
but also the two-stage p rog re s s  of the cr i t ica l  diffusion p roces se s .  

The equation obtained in [9] for  a two-component mixture  without taking its nonisothermy and the non-  

l inear  convective effects  into account and being of the form 

a___uu = A div (u2V u) - -  Hhhu,  u = c - -  Ccr, (1) 
at 

is valid for  diffusion not only near  the cr i t ica l  points of solutions,  but also in the domain of the l iquid--  
vapor  c r i t i ca l  points ,  as well as in the neighborhood of phase t rans i t ions  of the second kind since it takes 
account of the magnificat ion of the co r r e l a t ion  between the density fluctuations in this case .  

In con t ras t  to [9], we t r i ed  to solve the complete th ree-d imens iona l  equation (1) for  a space domain 
of a r b i t r a r y  geometry .  The idea of the solution proposed is f i r s t  to l inear ize  (1) and l a t e r  to take account 
of  the l inear iza t ion  e r r o r s  as per turb ing  functions in the success ive  approximations of the per turbat ion  
method.  The solution of the l inear ized  (unperturbed) problem is hence const ructed  on the basis  of the in-  
tegra l  method of Tolubinskii  [10], which pe rmi t s  the Green ' s  function of the heat  conduction equation to be 
obtained in a domain of a r b i t r a r y  shape by means  of the known fundamental solution of this equation. 

To l inear ize  (1), le t  us use the method proposed in [11] for  the heat  conduction equation. With r e -  

spect  to the function r = u s we can rewr i t e  (1) as 

o .  - h A  . au a~ = A div ~ Vq0 

If we put 

a-Lu = c + e01 @), ~ = B + e02 @), (3) 
a~ a~ 
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in  (2), w h e r e  e (0 -< ~ _<-< 1) is a p e r t u r b a t i o n  p a r a m e t e r  and B and C a r e  s o m e  cons t an t s ,  then  we obtain  an 
equa t ion  t r a n s f o r m e d  r e l a t i v e  to ~0, which  is ident ica l  to the ini t ia l  equat ion  fo r  the va lue  ~ = 1 

L (% e) = B  &p ~ AC div (vq)) + BHAA~p --  sO ((p) =0 ,  
Ot 

r ((p) = oo (cp) 

(4) 

.o,p _ A ?,iv [o~ ((p) vqq -I-HA [ 00o ((p) (V(p)~ + o~ (q~) zx,~]. (5) 
ot L Oq~ 

is  l i n e a r i z e d .  The  cons t an t s  B and C a r e  found f r o m  the condi t ions  (3) F o r  ~ = 0 the  equa t ion  L(g00, 0) = 0 
fo r  e = 0. Th i s  c o r r e s p o n d s  to an  exponent ia l  a p p r o x i m a t i o n  of  the funct ion ~ (go = g0s exp [ 1 / C ( u - u s ) ] ,  in 
the f i r s t  of  condi t ions  (3) and to i ts  l i n e a r  a p p r o x i m a t i o n  ~o = go s + 1 / B ( u - u  s) in the s e c o n d  condi t ion.  B e -  
cause  of  the c o n t r a d i c t i o n  in the condi t ions  (3) at  e = 0, t he i r  m e a n  va lues  in the r ange  of  v a r i a t i o n  of  u 
unde r  c o n s i d e r a t i o n  can  be taken for  B and C. 

We seek  the so lu t ion  of  (4) as  a s e r i e s  in i n c r e a s i n g  p o w e r s  of 

~,,,~ (6) ~ ( e ) = % - i -  z.~ . . . . . .  m =  1, 2, 3 . . . . .  
t.~z= 1 

w h e r e  the funct ions  ~00 and Go m should  be d e t e r m i n e d  (go 0 is the so lu t ion  of  the u n p e r t u r b e d  equat ion  (4) fo r  
= 0). Subst i tu t ing ~(e)  into (4) and g roup ing  coe f f i c i en t s  of  ident ica l  p o w e r s  in e ,  we obta in  the fo l low-  

ing infinite s y s t e m  of equat ions  

B 0%,~ _ ACdiv (V%,,) -!- BHXA%,~ -i- q),,~ : :  0, (7) 
Ot 

d),,, =q)m(q'o, % . . . . .  % ' -~) - -  (tn--1)! \ Oe'"-~JJE-=~ ~ (8) 

Since (4) is ident ica l  to the o r ig ina l  equa t ion  (1) for  s = 1, we should  put ~(~) in the so lu t ion  ~ = 1. The  
init ial  and b o u n d a r y  condi t ions  a r e  t aken  into accoun t  only to find ~o 0 in the ob ta ined  s e r i e s  of  boundary  
va lue  p r o b l e m s .  F o r  m = 1, 2,  3 . . . . .  they  (containing the p a r a m e t e r  e in the ze ro  power)  b e c o m e  h o m o -  
geneous .  F o r  this  r e a s o n ,  taking accoun t  of  the non l inea r i t i e s  in the p r o b l e m  under  c o n s i d e r a t i o n  r e d u c e s ,  
a f t e r  i ts  l i n e a r i z a t i o n ,  to t ak ing  a c c o u n t  of  the inf luence of  the v a r i a b l e - i n t e n s i t y  s o u r c e s  4,rn in a s y s t e m  
of  bounda ry  value  p r o b l e m s  of  the s a m e  type .  

Use  o f  the p e r t u r b a t i o n  m e t h o d  c o n s i d e r e d  above fo r  (1) is c l o s e l y  r e l a t e d  to p r o b l e m s  of  b i fu rca t ion  
o f  the so lu t ions  of  non l inea r  equa t ions  [12]. The  p a s s a g e  to a new unknown funct ion ~o hence  p e r m i t s  mak ing  
the d i f f e r ence  ~ - ~0 s l e s s  in c o m p a r i s o n  with u - u s ,  and in t u r n  th is  p e r m i t s  tak ing  accoun t  o f  those  p e r -  
t u rba t ions  ~(~o) for  which  the p e r t u r b a t i o n  p a r a m e t e r  e can  be subs tan t i a l ly  d i f f e ren t  f r o m  z e r o  and even  
equal  to one .  Since the e r r o r s  of the exponent ia l  and l i nea r  a p p r o x i m a t i o n s  of  the funct ion ~o e m e r g e  as  
p e r t u r b i n g  funct ions  with r e s p e c t  to which  a p e r t u r b a t i o n  t h e o r y  s e r i e s  is c o n s t r u c t e d ,  the a p p r o a c h  p r o -  
posed  then  p e r m i t s  ob ta in ing  a so lu t ion  as  c lose  as  d e s i r e d  to the exac t  in the given r ange  of  u - u  s ,  in c o n -  
t r a s t  to  [11]. I f  the l a t t e r  t u r n s  out to be too b r o a d ,  r e s u l t i n g  in deg rada t i on  of  the qua l i ty  of  the a p p r o x i -  
m a t i o n  of  ~0, then ana logous ly  to [11], it can  be s e p a r a t e d  into s e v e r a l  s u b - i n t e g r a l s  by then app ly ing  the 
s a m e  ca l cu l a t i on  s c h e m e .  Ano the r  a p p r o a c h  to l i n e a r i z i n g  this  p r o b l e m  and app ly ing  the p e r t u r b a t i o n  
me thod  can  be b a s e d  on the r e s u l t s  of  [13]. 

The  fundamenta l  so lu t ion  for  the o p e r a t o r  L(~00, 0) is def ined thus :  

F (r, r ', t - -  l') = L-~6 ( r - -  r') ~ (t -- t ' ) ,  (9) 

w h e r e  L "1 is the i n v e r s e  o p e r a t o r  to the o r ig ina l .  I t  is  e a s y  to show that  

1 j" 3 " e x p [ i k , ( r - - r ' ) @  i k2 ( t - - t ' ) ]dk ldk2  
F (r, r', t - -  t') -- (2n) t Bik., ~ AC (ikl) ~" -]- BH (ikl) 4 - -  ' (10) 

The  i n t e g r a l  wi th  r e s p e c t  to k 2 is h e r e  ca l cu l a t ed  by  r e l i a n c e  on r e s i d u e  t heo ry ,  and it  is  expedient  to go 
o v e r  to a s p h e r i c a l  c o o r d i n a t e  s y s t e m  by d i r e c t i n g  the p o l a r  ax i s  a long  the v e c t o r  R = r - r '  in o r d e r  to 
i n t e g r a t e  with r e s p e c t  to k t .  Consequen t ly  

O(t-- t ' )  exp - -  l~ ] - -Hk{  ( t - - t ' )  sin(klN)/qdkl. (111 r (r, r',  t - -  t') 2 .~BR 
0 

901 



In the one-d imens iona l  case  

O(t - - t ' )  i exp [ ( _ ~ _ k ~ _ H k ~ l ( t _ t , ) l c o s k l ( x _ x , ) d k l .  (12) F (x, x ' ,  t - -  t ') --- ~B . 

o 

An exact  calcula t ion of (11) and (12) by using known functions is  not apparen t ly  poss ib le .  Let  I 1 and 
I s denote the in tegra ls  in (11) and (12). r e spec t ive ly ,  and in addition let  a = A C / B ( t - t , ) ,  b = H ( t - t ' ) .  Le t  
us make  the change of va r i ab le  k~ = y in I 1 and le t  us  introduce the approx imat ion  ~fy ~ fllY, f l i=  1/~fY0. 
The  value of Y0 is se lec ted  in such a way that  the in terva l  0-Y0 turns  out to be  the e s sen t i a l  domain  of in-  
t egra t ion ,  i .e . ,  so that ~fY0 >> exp ( - a Y 0 - b ~ ) .  Hence 

I1 = -g- [exp (~)er fc  ~/1 - -  exp (tire) eric tF~], 

' (13) 

�9 a+iR~l_ ~ tF1 ,  a--iR~x._ ~ . ~ ,  e r f c ~ = l - - q b ( t I ' i )  , 
2vb 21 b 

where @(~i) is  the  probability integral. In order  to emphasize the oscillatory nature of 1 ~ , let us evaluate 

I i by another  method by wri t ing  i t  as  

11 1 exp (bcd) I '  exp ( - -by  ~) sin (R = - -  1 / ~ - y  - - .~)  dy, a . . . .  a . (14) 
2 3 2b 

Le t  us introduce the approx imat ion  ~ ~ f l2 (y-o~) ,  ~2 = 1/Y0~-~--~-~ in the e s sen t i a l  domain  of in tegra t ion,  
and le t  us r e p r e s e n t  I 1 a s  the d i f ference  between two in tegra l s  within the l im i t s  O-r and 0 - a .  Evaluat ing 
the l a t t e r  by using the theorem of the mean ,  we obtain that  

11 ---- ~ exp (b~ 2) cos ~'x [ - ~  exp q) , , 2 __ 1 - -  cos 4b . 2 ' 4b '" ~ (D (c~ V-b-I 

where  ~(c;  d; x) is the degenera te  hype rgeom e t r i c  function. 

Af t e r  making  the change of va r i ab le  k~ = y it is expedient  to apply in tegra t ion  by pa r t s  to the in tegra l  

12 and l a t e r  introducing the approx imat ion  4-y ~ fllY. Consequently 

2 

- -a  exp (*~)eric IF, + a exp (~)er ic  ~i ] ,  n = x - - x ' .  (16) 

The quanti t ies  ~ and ~ enter ing  here  a r e  obtained f rom the exp re s s ions  p re sen t ed  in (13) a f t e r  R has  been  
r ep l aced  by n. Jus t  as  (15) had been evaluated,  it can be found that  

I.. -- a - -  2b~ 11 ~ exp (bo~ ~) F~ cos 7~ - -  F~ sin ~,~ 
n n 

1--exp(--be~) l - - c o s  n~ a '  --sinT~sin , ~/e=cr (17) 
27~ 

---- 4 V b  = exp - - - - ~ ] ,  F ~ -  2 4b 2 ' 4b " 

This  exp re s s ion  for  I 2 is m o r e  awkward than the preced ing ,  however ,  i t  has  the advantage that  it does not 
contain the probabi l i ty  in tegra l  of  imag ina ry  a rgument .  Asympto t ic  e s t i m a t e s  for I i can also be obtained 

by using the saddle-poin t  method.  

Only an  approx imate  e s t i m a t e  of the exp re s s ions  obtained for  I i i s  poss ib le .  The r a t io  w between 
the a r e a s  under  the line fllY and the curve  4-y within the l imi t s  0 - y  0 or  the ra t io  be tween the definite i n -  
t eg ra l s  with the functions s inRf l iy  and s i n R ~ y  between the s a m e  l imi t s  can be taken as  this e s t ima te .  
However ,  in the genera l  ca se ,  the value of Y0 which depends on the unknown coeff ic ients  a and b, and t h e r e -  
f o r e ,  on t ,  turns  out  to be unknown. (& rough e s t ima te  for  the coeff ic ient  H is  p r e s e n t e d  in [7] in one 
speci f ic  c r i t i ca l  diffusion case . )  The quality of the approximat ion  ~fy ~ fliY turns  out to be  h igher ,  the 
s m a l l e r  the in te rva l  0 -y0 .  The  inaccuracy  in the approx imat ion  will  hence be fe l t  p r inc ipa l ly  in the na ture  
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of the G r e e n ' s  function osci l la t ions since Rflly is the argument  of  the sine. I t  mus t  be emphas ized  that the 
e r r o r  in evaluating I i can be reduced  to p rac t ica l ly  ze ro  by approximating ~'y by l ines in severa l  in tervals  
along y.  It follows f rom a graph of the function f y  that an insignificant e r r o r  is a s su r ed  by two such in-  
t e rva l s .  (The r e su l t s  of  these calculat ions a re  not p re sen ted  since they turn  out to be twice as long as 
those p resen ted  above.) Moreove r ,  the accu racy  of the calculat ions can be r a i s ed  if  I i is mult iplied by 1/w. 

Fundamental  solut ions,  more  convenient for  the de te rmina t ion  of the coeff ic ient  H by means  of ex -  
pe r imenta l  r e su l t s ,  can be obtained if a two-s tep  approach to c r i t i ca l  diffusion is used. F o r  large  devia-  
t ions of the initial f rom the c r i t i ca l  concentra t ion,  the ra te  of the diffusion p r o c e s s e s  in some t ime in t e r -  
val  t 0 - t  is de te rmined  by the m e m b e r  with A in (1). The influence of the m e m b e r  with the coeff icient  H 
turns  out to be dominant a f te r  the in terva l  mentioned.  This  p e rm i t s  r ep resen t ing  (1) as 

du 
- -= 0 (t o - -  t) A div (u2v u) - -  0 (t --  to) Hhhu (18) ~ 

dt 
and cons ider ing  the influence of the m e m b e r s  in the r ight  s'ide of (18) in turn.  Consequently,  for  t < t o 
the form of the source  6(~0) in the l inea r ized  equation is s impl i f ied,  and its fundamental solution turns  
out to be analogous to the solution for  the heat  conduction equation. The in tegra ls  in the fundamental solu-  
t ions for  the equation with the l inear  t e r m  a re  a pa r t i cu la r  case  of (11) and (12). The m o r e  complex in-  
tegra l  in the one-dimensional  solution is wr i t ten  in the tabulated fo rm 

1 1 / /  n i e x p ( _ b o z ~ ) j l ( z ) d z ,  b o = b  
13 = T ~ - 7 n~f~ ~ , (19)  

0 

where  J .4 /2(z)  is the Bes se l  function of the f i r s t  kind. Hence 

(+) t 5 I 1 
13 = 8 - / - - - ~ - F ( ~ "  exp ( - - - ~ - o  ( I ) ~ - f f  4 ; 2 ' 4bo  ) .  (20, 

Here  F(x) is the Eu l e r  gamma-funct ion.  The th ree -d imens iona l  fundamental solution is also expressed  in 
t e r m s  of the product  of a negative exponential  by a degenera te  hype rgeomet r i c  function. The t ime t o in 
(18) is de te rmined  just  as has  been done in [8]. 

According t o  [10], the Green ' s  function G of the opera to r  L(~ 0' 0) in a domain D of arbi t rary,  convex 
shape with a sur face  S, to each of whose e lements  the di rect ions  of the normal  n at  the boundary points 
M, N . . . .  a r e  defined, can be wr i t t en  as  

t t 

G(r, r', t - - t ' ) =  F(r, r', t--t')-~-~ d~ .IS qn (rM, r', T - - t ' )F ( r ,  rM, t---z) dZrM + S d~.~ qn(rM, r', z--/')d2rM 
t" S ~' S 

t 

X.t 'd ~ j'j" qn(rN, r M, ~--'t:)F(r, rN, /--~)d2rN--', . . .  (21) 

In con t ras t  to [10], a m o r e  complex express ion  than the F o u r i e r  law hence e m e r g e s  as qn:  

' ( - A r  qn (rm r,  ~--  t') -- AC gradRo r cos (Ro, n), 
B ~ AC / 

Ro = r M -  ft. (22)  

The Green ' s  function G = F + F 0 for  domains of c lass ica l  shape can also be found if  the Laplace t r a n s -  
form is applied to the equation L(q~0, 0)F 0 = 0 with homogeneous boundary conditions cor responding  to the 
boundary value problem under considerat ion.  

Using the well-known method f rom the theory  of G reen ' s  functions of the many body problem [14], 
the in tegra ls  with r e s p e c t  to t ime ,  which a re  a convolution of functions,  can be e l iminated in (21) by sub-  
ject ing G to a F o u r i e r  t r a n s f o r m  in the d i f ference  in t ime t - t ' .  Taking into account  the fact  that the con-  
t r ibut ions  of the individual s u r f a c e e l e m e n t s  in the format ion  of G in the  domain D turn  out to be independent 
because  of the superpos i t ion  pr inc ip le ,  it is easy  to ob t a ina  t ime- independent  s e r i e s  fo r  the F o u r i e r  t r ans fo rm 

G(r, r', co) = r ( r ,  r', ~)+ S~qn(%, r', ~) r ( r ,  r M, r M 
S 

+ ~s y qn(rM' r" r176 d2rM ~S qn (rN' rm' @P(r, rr~,o) d2rN+ .... (23) 
S 
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After integrating over  S while taking account of the real  geometry of the domain D and summing the mem-  
bers of the ser ies  obtained by using the inverse Fourier  t ransform,  we find G(r, r ' ,  t - t ' ) .  

Let a s tream of diffusing substance with the density q(rM, t) come into a par t  of the surface S 1 in 
the domain D, while this substance is absorbed with a s t r e a m  density Q(rN, t) on the remaining par t  of the 
surface S~, and moreover ,  sources of intensity F(r ,  t) act within D. Then 

t 

S2 D 

t 

-k6~,.f d~S.f.f@m(r',:)G(r, r', t*)d'r', t*~-,--t '--T, n=O, 1 , 2  . . . . .  (24) 
0 D " 

where 6 ~ is the Kronecker delta. 

Diffusion in some domain was considered above. If diffusion is analyzed in a capillary having a 
cr i t ical  concentration at the initial instant, then the course of the diffusion will be revers ible :  f i rs t  r e -  
ta rd .d ,  and then more  rapid. Hence, the step functions in the members  of (18) should interchange places. 
If the functions F,  q, Q in (24) depended on u, then they should be t ransformed with respect  to ~. 

The recurs ion relationship (24) yields the solution of the formulated problem in quadratures.  Let 
us examine some of its singularities. The deduction about the extremely slow progress  of the cri t ical  dif- 
fusion processes ,  theirnon-monoh~neity andosciUatory nature,  made in [9], is verified by (13), (15)-(17), 
(20)~which enter  as cofactors in the expressions which can be considered sufficiently exact Green 's  func- 
tions of the operator L for an infinite space. It follows from these expressions that the velocity of the 
cri t ical  diffusion processes  is determined, in contrast  to the ordinary law ~ 2 v ~ ,  by the superposition 
of functions with more  complex arguments. The oscil latory nature of the Green 's  function results  in 
stratification of the concentration in the diffusion process  in a spherically symmetrical  manner around the 
source of substance. Taking into account the reflective propert ies  of the walls, diffusion in a bounded 
space should be accompanied by effects recalling wave interference.  Since the sign s o f  the members  in 
the Green 's  function turn out to be variable in time for a fixed point, then for some R the diffusion can, 
in principle,  change sign in t ime, i . e . ,  extraction can be observed instead of dissolution of the diffusing 
substance. Because of the strong retardation of the diffusion processes ,  the layers  of substance turn out 
to be stable in time. A laminar configuration with weakly expressed transition domains is observed ex-  
perimentally in the near-cr i t ica l  domain [6]. If such a configuration can actually be related to the behavior 
of the Green 's  function, then the possibility, in principle, a r i ses  in this case of determining the coefficient 
H experimentally by measuring the spacings between the individual gradient lines, or  in other words, by 
means of the width of the layers .  As the system temperature  changes in the crit ical domain, the nature 
of the diffusion changes abruptly. The appearance of intensive convective currents  and the formation of 
clearly expressed jets which then break up into individual drops [6] are  possible. All this indicates t h e  
need for taking account of the terms describing the thermodiffusion pressure  effect in (1). 

Using the fundamental solutions obtained and the compensation principle formulated in [10], we can 
also solve the problem of cri t ical  diffusion even with more  complex boundary conditions of the f i rs t  kind. 

N O T A T I O N  

c 

m 
r ' ,  t '  

r M ,  r -  N 

is the concentration; 
is the perturbation parameter ;  
is  the approximation; 
are  the point radius-vector  and the time of origination of a single source of  substance; 
a re  the radii vectors  of the boundary points of the domain D. 

S u b s c r i p t s  

s denotes @ and u to the initial instant. 

1 .  

2 ,  
3. 
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